US009344274B2

a2z United States Patent (10) Patent No.: US 9,344,274 B2
Onoda (45) Date of Patent: *May 17, 2016
(54) METHOD AND SYSTEM FOR ENCRYPTING (58) Field of Classification Search
DATA CPCccvue HO04L 9/06; HO4L 9/00; HO4L 9/30;
HO4L 9/18; GOGF 7/725
(71) Applicant: International Business Machines USPC oo, 713/155-159; 709/229; 380/28-30,
Corporation, Armonk, NY (US) 380/44-47, 277-283; 308/28-30, 44-47,
. 308/277-283
(72) Inventor: Yasuhiro Onoda, Kanagawa (JP) See application file for complete search history.
(73) Assignee: International Business Machines .
Corporation, Armonk, NY (US) (56) References Cited
(*) Notice: Subject to any disclaimer, the term of this U.S. PATENT DOCUMENTS
patent is extended or adjusted under 35 5768390 A 6/1998 Coppersmith et al.
U.S.C. 154(b) by 0 days. 9,143,326 B2 9/2015 Onoda
. 2004/0042620 Al 3/2004 Andrews et al.
This patent is subject to a terminal dis-)
claimer. (Continued)
(21) Appl. No.: 14/735,292 FOREIGN PATENT DOCUMENTS
. CN 1643841 7/2005
(22) Filed: Jun. 10, 2015 CN 101682502 37010
(65) Prior Publication Data (Continued)
US 2015/0312032 Al Oct. 29, 2015 OTHER PUBLICATIONS
Related U.S. Application Data Information Materials for IDS—Office Action dated Jun. 3, 2015, 3
P: .
(63) Continuation of application No. 13/760,194, filed on ages Continued
Feb. 6, 2013, now Pat. No. 9,143 ,326. (Continued)
30 Foreign Application Priority Data Primary Examiner — Evans Desrosiers
Mar. 29. 2012 (JP) 2012-077904 (74) Allorney, Agenl, or Firm — SChmeiSer, Olsen & Watts,
29,2012 (JP) oo LLP: Tohn Pivnichny
(51) Imt.ClL
HO04K 1/00 (2006.01) (57) ABSTRACT
HO4L 9/00 (2006.01) . . .
HO4L 9/38 (2006.01) A method and system for encrypting data. Ciphertext is gen-
HO4L 906 (2006.01) erated from plaintext by applying an initialization vector and
HO4L 928 (2006.01) an encryption key to the plaintext. The initialization vector is
HO4T 9/00 (2006.01) combined with the ciphertext to generate encrypted data, by
(52) US.Cl using an embedding rule to perform the combining.
CPC ..o HO4L 9/0618 (2013.01); HO4L 9/28
(2013.01) 17 Claims, 7 Drawing Sheets
10
DE Levice B
i1
A SN § g

13

14

-

4 ol £

Reseiving Unit

DB Management Unit

fenid Transmitiing

Unit

15

¥

7

Encryption Unit

*”"i Storage Unit

¥ Decrynting Unit

US 9,344,274 B2

Page 2

(56) References Cited Ip 2007274715 10/2007

P 2007311936 11/2007

U.S. PATENT DOCUMENTS Jp 2008011181 1/2008

P 2008039844 2/2008

2007/0011344 Al 1/2007 Paka et al. P 2008124936 5/2008

2007/0038873 Al 2/2007 Oliveira et al. P 2008124987 5;2008

2007/0073422 Al 3/2007 Gaikwad ctal. g ﬂgééﬂ 1(5) 58?5

2007/0198858 Al 8/2007 Kim et al. P 2010231978 0010

2007/0237327 Al* 10/2007 Taylorccccooov..... HO4L gg%ﬁ/gg P 20102066751 112010

2009/0161874 Al 6/2009 Eun etal. {,50 201;;;‘7‘82‘2‘ ?ﬁgéé

2010/0067687 Al* 3/2010 Chandramouli HO04L 2/8%6/:135 WO 2007038509 4/2007
2010/0174897 Al 7/2010 Schumacher OTHER PUBLICATIONS

2013/0259225 Al 10/2013 Onoda
Information Materials for IDS—JPO Office Action dated Jun. 9,

FOREIGN PATENT DOCUMENTS 2015, 3 Pages.)

Anonymous; A Program to Securely and Effectively Encrypt Mul-
CN 101753292 6/2010 tiple Plain Text with One Initialization Vector; IPCOM000208119D;
Jp 5249891 9/1993 ip.com; Jun. 24, 2011; 2 pages.
JP 7058961 6/1995 Office Action (mail date Aug. 18, 2014) for U.S. Appl. No.
Jp 7273756 10/1995 13/760,194, filed Feb. 6, 2013.
Jp 2546504 10/1996 Amendment (Nov. 17, 2014) for U.S. Appl. No. 13/760,194, filed
Jp H09270785 10/1997 Feb. 6, 2013.
Jp 2000252973 9/2000 Final Office Action (mail date Mar. 3, 2015) for U.S. Appl. No.
P 2002042424 2/2002 13/760,194, filed Feb. 6, 2013.
Jp 2002108205 4/2002 .
P 5002333834 11/2002 Final amendment (Apr. 23, 2015) for U.S. Appl. No. 13/760,194,
P 2003110842 4/2003 filed Feb. 6, 2013. _
1P 3442010 9/2003 Notice of Allowance (mail date May 18, 2015) for U.S. Appl. No.
P 2005175605 6/2005 13/760,194, filed Feb. 6, 2013.
Jp 2006318589 11/2006

Jp 2007134860 5/2007 * cited by examiner

US 9,344,274 B2

Sheet 1 of 7

May 17, 2016

Hury BupdAned lge— Hun oBBInIS bl HUN voOpdAnUD
xi\ ~ \.L
g1 i Gl
N
Otspissuesy yuny awebeuep gg e UMY BlpIEOSY
v\,...(...« .»kx:\ 2 \\.\s\..
¥i &l el
gd
F T
-
b amnel a0

U.S. Patent

b oild

US 9,344,274 B2

Sheet 2 of 7

May 17, 2016

U.S. Patent

Aoy uondiauy

¥

\.;&

443

g peidhsuE
£ HOOHE SO0 “xnu Zi ooty JeudD L4 o0 syt
A e E-Y
SH SEAlG UendASUR 306k ek o8 Ss8T0y vogdiinuy L e80003d utiinug
5 R F S
a et o “ 9 Fleig]t
g e
£ 001 NBHEL R 78 ¥00Ig et L4 O PEBIRIG e mm : Al
: 4 ; & < &N " Y ; ’
k] %,
b i 5 N § §
1 i > LI t
] w S S f
\x\\ PRl
L0t
eold

US 9,344,274 B2

Sheet 3 of 7

May 17, 2016

U.S. Patent

Ly ebaaog of

g

A1 ebeiols wioddy

iy Bunniuiesg

¥

1y Susppeau
oiny BUPPeMU eenged 1LY QUIDEBGLWIT A
“..\{\ \l\ & &
74 8¢
i Bupeisues A
!.y\\
IS
54
k4
RERLE Buneisuen
" papsydin
mz;\ \.\k\ &
Ld vé
kA
yun puy Bugnding
funhoy 1XO1EBd gyeq peydAoug
e & o
/ b
a4 Lé

u

24 win wewsbeueyy g0 Woid

21 wun ewsbeuey Qg of

¢

U.S. Patent May 17, 2016 Sheet 4 of 7 US 9,344,274 B2

FIG. 4

e
v S201
Prepare Encryption Key

¥ S%QZ

Receive Plaintext -
¥ Sgﬁﬁ

Gensrate iV o
4 5204

Encrypt Plaintext Using Encryption |7
Key and IV {o Obtain Ciphertext

¥ Sﬁﬁﬁ
Determine Embedding Rule

£ 3206
Embad IV in Ciphentext Acoording to Determined | ..
Embedding Rude, Qblgin Encrypted Dats
¥ 5207

Retun Encryption Data With g
Embedded IV o Requesisr

¥

{ End }

US 9,344,274 B2

Sheet S of 7

May 17, 2016

U.S. Patent

HIE S
Bungsstias Maield

wun Buinboy

Asyg uoidiious

ol &

’a

»

e

wun Bunesedeg Al

Hun Sunboy

21 puny sfeang of

ajmy Buippaquil

\%\ %

¥e
¥
Hib e wun Bulmnboy
Bupnding wepieid gyeq] paydinuy

T
o

o
8

e &

Rey \‘.
AN

g

£E

wupy Bundéoag

21 pun ey wod

5w

¥

21 HUf usaBetely Qe Wind

21y wswslouen g0 oy

U.S. Patent

FIG. 8

May 17, 2016 Sheet 6 of 7

(st)
I

US 9,344,274 B2

5301

Prepare Encryption Key

'

Receive Encryplion Data With
Embedded IV

S%OZ
e

I

S343

Acquire Embedding Rule

!

Separate Encrypled Data into IV and Ciphertext
According o Acquired Embedding Rule

S304
s

e

L

Deorypt Ciphertext Using Encryption Key and IV
o Obtain Plaintext

|

Return Plaintext o Requester

I
oD

U.S. Patent May 17, 2016 Sheet 7 of 7 US 9,344,274 B2

FiG. 7
90a
/«J
#1548
40c i 80d
/ TN gm
. /R Display
dain Memaorty Chip Set Machanism
90f T oo 90g
£ N N
; C pe it Magnetic Disk
Network Interface Bridge Cirouit Nevice
90 ' a0h
Lo N
Keyboard/Mouse Audic Mechanism
90j
/""Nv‘
Floppy Disk Drive

US 9,344,274 B2

1

METHOD AND SYSTEM FOR ENCRYPTING
DATA

This application is a continuation application claiming pri-
ority to Ser. No. 13/760,194 filed Feb. 6, 2013, now U.S. Pat.
No. 9,143,326issued Sep. 22, 2015.

TECHNICAL FIELD

The present invention relates generally to a device, system,
and method for encrypting data. More specifically, the
present invention relates to a device, system, and method for
encrypting data using a block encryption scheme in which
data is encrypted in each block.

BACKGROUND

Data encryption is performed by encrypting plaintext to
obtain unintelligible ciphertext. For example, encryption may
be performed using as input an encryption key and an initial-
ization vector in addition to the plaintext. However, current
encryption schemes do not adequately manage the initializa-
tion vector.

BRIEF SUMMARY

The present invention provides a method for encrypting
data, said method comprising:

generating, by a processor of a computer system, an ini-
tialization vector;

said processor generating ciphertext from plaintext by
applying the initialization vector and an encryption key to the
plaintext; and

said processor combining the initialization vector with the
ciphertext to generate encrypted data, by using an embedding
rule to perform said combining.

The present invention provides a computer program prod-
uct, comprising a computer readable storage device having
computer readable program code stored therein, said program
code containing instructions which, upon being executed by a
processor of a computer system, implement a method for
encrypting data, said method comprising:

said processor generating an initialization vector;

said processor generating ciphertext from plaintext by
applying the initialization vector and an encryption key to the
plaintext; and

said processor combining the initialization vector with the
ciphertext to generate encrypted data, by using an embedding
rule to perform said combining.

The present invention provides a computer system com-
prising a processor, amemory coupled to the processor, and a
computer readable storage device coupled to the processor,
said storage device containing program code which, upon
being executed by the processor via the memory, implements
a method for encrypting data, said method comprising:

said processor generating an initialization vector;

said processor generating ciphertext from plaintext by
applying the initialization vector and an encryption key to the
plaintext; and

said processor combining the initialization vector with the
ciphertext to generate encrypted data, by using an embedding
rule to perform said combining.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing an example of a con-
figuration for a database device in an embodiment of the
present invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 is a diagram showing an overview of the process for
embedding an IV in ciphertext in an embodiment of the
present invention.

FIG. 3 is a diagram showing an example of the functional
structure of an encryption unit in an embodiment of the
present invention.

FIG. 4 is a flowchart showing an example of operations
performed by an encryption unit in an embodiment of the
present invention.

FIG. 5 is a diagram showing an example of the functional
structure of a decryption unit in an embodiment of the present
invention.

FIG. 6 is a flowchart showing an example of operations
performed by a decryption unit in an embodiment of the
present invention.

FIG. 7 is a diagram showing an example of the hardware
configuration of a computer able to implement an embodi-
ment of the present invention.

DETAILED DESCRIPTION

A purpose of the present invention is to allow, in a block
encryption scheme for encrypting data in each block, an
initialization vector (IV) to be applied to each data set without
adversely affecting confidentiality or increasing the adminis-
trative burden. Another purpose of the present invention is to
eliminate, in a block encryption scheme for encrypting data in
each block, the need for special management means to man-
age initialization vectors.

In order to achieve these purposes, the present invention
provides a device for encrypting data using a block encryp-
tion scheme for encrypting data in each block, in which the
device includes: a first acquiring unit for acquiring first data,
the first data being data to be encrypted; a second acquiring
unit for acquiring an encryption key used in the block encryp-
tion scheme; a first generating unit for generating an initial-
ization vector used in the block encryption scheme; a second
generating unit for generating second data by encrypting the
first data acquired by the first acquiring unit with the block
encryption scheme using the encryption key acquired by the
second acquiring unit and the initialization vector generated
by the first generating unit; and an embedding unit for embed-
ding the initialization vector generated by the first generating
unit in the second data generated by the second generating
unit according to an embedding rule. Here, the first acquiring
unit in the device may also include: a determining unit for
determining an embedding rule each time first data is
acquired; and a storage unit for storing a correspondence
relationship between first data acquired by the first acquiring
unit, and either an embedding rule determined by the deter-
mining unit or a determination method for the embedding
rule. In this situation, the determining unit may determine an
embedding rule for a portion of second data other than a
predetermined portion on the basis of the predetermined por-
tion of the second data generated by the second generating
unit. Also, the embedding unit in this device may include: a
third acquiring unit for acquiring third data generated by the
embedding unit having embedded the initialization vector in
the second data; a separating unit for separating the third data
acquired by the third acquiring unit into the initialization
vector and the second data according to an embedding rule;
and a decryption unit for restoring the first data by decrypting
the second data obtained by the separating unit using the
encryption key separated and acquired by the second acquir-
ing unit, and the initialization vector separated and acquired
by the separating unit.

US 9,344,274 B2

3

The present invention also provides a device for maintain-
ing a database for storing data encrypted using a block
encryption scheme for encrypting data in each block, in
which the device includes: a storage unit for storing an
encryption key used by the block encryption scheme; a
receiving unit for receiving first data from a storage-request-
ing device requesting storage of first data in the database; a
first generating unit for generating an initialization vector
used by the block encryption scheme; a second generating
unit for generating second data by encrypting the first data
received by the receiving unit with the block encryption
scheme using the encryption key stored in the storage unit,
and the initialization vector generated by the first generating
unit; a third generating unit for generating third data by
embedding according to an embedding rule the initialization
vector generated by the first generating unit in the second data
generated by the second generating unit; a housing unit for
storing in the database the third data generated by the third
generating unit; an acquiring unit for acquiring the third data
from the database in accordance with a retrieval request from
a retrieval-requesting device requesting retrieval of the first
data from the database; a separating unit for separating the
third data acquired by the acquiring unit into the initialization
vector and the second data according to the embedding rule;
a restoring unit for restoring the first data by decrypting the
second data separated and acquired by the separating unit
using the encryption key stored in the storage unit and the
initialization vector separated and acquired by the separating
unit; and a transmitting unit for transmitting the first data
restored by the restoring unit to the retrieval-requesting
device.

The present invention also provides a method for encrypt-
ing data using a block encryption scheme for encrypting data
in each block, in which the method includes the steps of:
acquiring first data, the first data being data to be encrypted;
acquiring an encryption key used in the block encryption
scheme; generating an initialization vector used in the block
encryption scheme; generating second data by encrypting the
first data with the block encryption scheme using the encryp-
tion key and the initialization vector; and embedding the
initialization vector in the second data according to an embed-
ding rule.

The present invention also provides a program enabling a
computer to function as a device for encrypting data using a
block encryption scheme for encrypting data in each block, in
which the program enables the computer to function as: a first
acquiring unit for acquiring first data, the first data being data
to be encrypted; a second acquiring unit for acquiring an
encryption key used in the block encryption scheme; a first
generating unit for generating an initialization vector used in
the block encryption scheme; a second generating unit for
generating second data by encrypting the first data acquired
by the first acquiring unit with the block encryption scheme
using the encryption key acquired by the second acquiring
unit and the initialization vector generated by the first gener-
ating unit; and an embedding unit for embedding the initial-
ization vector generated by the first generating unit in the
second data generated by the second generating unit accord-
ing to an embedding rule.

The present invention also provides a program enabling a
computer to function as a device for decrypting data using a
block encryption scheme for encrypting data in each block, in
which the program enables the computer to function as: an
acquiring unit for acquiring third data generated by embed-
ding according to an embedding rule an initialization vector
in second data generated by encrypting first data with the
block encryption scheme using an encryption key and the

10

20

25

30

35

40

45

55

60

4

initialization vector; a separating unit for separating the third
data acquired by the acquiring unit into the initialization
vector and the second data according to the embedding rule;
and a restoring unit for restoring the first data by decrypting
the second data separated and acquired by the separating unit
using the encryption key and the initialization vector sepa-
rated and acquired by the separating unit.

The present invention enables, in a block encryption
scheme for encrypting data in each block, an initialization
vector to be applied to each data set without adversely affect-
ing confidentiality or increasing the administrative burden.

FIG. 1 is a block diagram showing an example of a con-
figuration for a database (DB) device 10 in an embodiment of
the present invention. As shown in the drawing, the DB device
10 includes a DB 11, a DB management unit 12, a receiving
unit 13, a transmitting unit 14, an encryption unit 15, a
decrypting unit 16, and a storage unit 17. The storage unit 17
is a hardware storage device such as, inter alia, the magnetic
disk device 90g depicted in FIG. 7.

The DB 11 is a collection of data shared by a plurality of
client terminals (not shown) connected, for example, via a
network to the DB device 10. The data is stored, for example,
in a plurality of tables in a relational database.

The DB management unit 12 stores data in the tables of the
DB 11, retrieves data from the tables of the DB 11, instructs
the encryption unit 15 to encrypt data, instructs the decryption
unit 16 to decrypt encrypted data, and performs other pro-
cesses. More specially, when the receiving unit 13 receives a
request to store data in a table of the DB 11, the receiving unit
13 determines whether or not the data to be encrypted is
included in the data received by the receiving unit 13 along
with the storage request. In the case of data to be encrypted,
the encryption unit 15 is instructed to encrypt the data,
encrypted data is acquired, and the encrypted data is stored
along with data not requiring encryption in the DB 11. Also,
when the receiving unit 13 receives a request to retrieve data
from a table of the DB 11, the DB 11 is searched using key
information (information which is a search key able to
uniquely identify data) received by the receiving unit 13 along
with the retrieval request, and it is determined whether or not
encrypted data is included in the retrieved data. In the case of
encrypted data, the decryption unit 16 is instructed to decrypt
the data, decrypted data is acquired, and the decrypted data is
outputted along with data that has not been encrypted to the
transmitting unit 14. In this embodiment, the DB manage-
ment unit 12 is provided as an example of a storage unit for
storing data in a database.

The receiving unit 13 receives a request to store data in a
table of the DB 11 from a client terminal (not shown) serving
as an example of a storage-requesting device, and the storage
request is passed along with the data to the DB management
unit 12. The receiving unit 13 also receives a request to
retrieve data from a table of the DB 11 from a client terminal
(not shown) serving as an example of a retrieval-requesting
device, and the retrieval request is passed along with key
information to the DB management unit 12.

The transmitting unit 14 receives from the DB manage-
ment unit 12 data retrieved from the DB 11 (including data
decrypted by the decryption unit 16), and this data is sent to
the client terminal (not shown) serving as an example of a
retrieval-requesting device.

The encryption unit 15 receives data to be encrypted from
the DB management unit 12. This data is encrypted with a
block encryption scheme using an encryption key and an
initialization vector, and the encryption results are returned to
the DB management unit 12. In one embodiment, the block

US 9,344,274 B2

5

encryption method used here can be the Advanced Encryption
Standard (AES) or the Data Encryption Standard (DES).

The decryption unit 16 receives encrypted data from the
DB management unit 12. This data is decrypted using the
decryption scheme corresponding to the block encryption
scheme of the encryption unit 15 using the same encryption
key and initialization vector used by the encryption unit 15,
and the original unencrypted data is returned to the DB man-
agement unit 12.

The storage unit 17 stores the encryption keys used by the
encryption unit 15 to encrypt data and by the decryption unit
16 to decrypt data. In this embodiment, the encryption key
storage area in the storage unit 17 serves as an example of a
storage unit for storing encryption keys.

These function units are realized by software and hardware
resources working in tandem. More specifically, these func-
tion units are realized by the CPU, which reads the program
(for realizing the DB management unit 12, the receiving unit
13, the transmitting unit 14, the encryption unit 15, and the
decryption unit 16) from, for example, a magnetic disk device
to the main memory, and then executes the program. More
specifically, the DB management unit 12 is utilized by, for
example, executing a database management system (DBMS)
program. The encryption unit 15 is executed, for example, by
executing a program for an encryption function correspond-
ing to a specific block encryption scheme, and the decryption
unit 16 is executed, for example, by executing a program for
a decryption function corresponding to the specific block
encryption scheme used by the encryption unit 15. Here, the
encryption function and the decryption function provided by
the DBMS can be used. Also, the DB 11 and storage unit 17
can be realized, for example, using a magnetic disk device.

A computer program product of the present invention com-
prises a computer readable storage device having computer
readable program code stored therein. The program code
contains instructions which, upon being executed by a pro-
cessor (e.g., a CPU) of a computer system, implement meth-
ods of the present invention, including methods for encrypt-
ing data and for decrypting data.

A computer system of the present invention comprises a
processor, a memory coupled to the processor, and a com-
puter readable storage device coupled to the processor. The
storage device containes program code which, upon being
executed by the processor via the memory, implements meth-
ods of the present invention, including methods for encrypt-
ing data and for decrypting data.

In this embodiment, a DB device 10 with this configuration
does not manage the initialization vectors (e.g., pseudo-ran-
dom numbers) generated for each row of a table separately
from the ciphertext, but embeds them in the ciphertext. FIG.
2 is a diagram showing an overview of the process for embed-
ding these initialization vectors in ciphertext. As shown in the
drawing, plaintext 101 is first divided into blocks, and plain-
textblocks #1,#2, .. . , #n are generated. Next, plaintext block
#1 is encrypted using encryption key 102 and initialization
vector 103 in encryption process #1 to obtain cipher block #1.
Plaintext block #2 is encrypted using encryption key 102 and
cipher block #1 in encryption process #2 to obtain cipher
block #2. Similarly, each subsequent plaintext block is
encrypted using encryption key 102 and the previous cipher
block to obtain a cipher block. Cipher blocks #1, #2, ..., #n
are synthesized, and ciphertext 104 is generated. In this
embodiment, ciphertext 104 is not returned without further
modification as the encryption results. Instead, for example,
the initialization vector 103 is combined with the ciphertext
104 according to an embedding rule to generate the resulting
encrypted data 105 which is returned.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

The preceding process of generating the ciphertext 104
depicted in FIG. 2 is summarized as follows. The plaintext
101 is divided into N plaintext blocks denoted as By, .. ., B,
wherein N is an integer of at least 2. Block B, is encrypted
using the encryption key 102 and the initialization vector 103
to generate cypher block C,. Block B, is encrypted using the
encryption key 102 and block B, ; to generate cypher block
C, (n=2,...,N). Cypher blocks C,, . . ., C, are combined
(e.g., concatenated) to generate the ciphertext 104.

While not shown in the drawing, when this encrypted data
105 is decrypted, the encrypted data 105 is first divided in
accordance with the embedding rule used during encryption
into initialization vector 103 and the ciphertext 104 which is
the original encryption result. The ciphertext 104 is then
decrypted using the encryption key 102 and the initialization
vector 103 in a decryption scheme corresponding to the block
encryption scheme used during encryption.

The following is a detailed explanation of the functional
unit in the DB base 10 which perform these operations. The
configuration and operations of the encryption unit 15 used to
encrypt data will be explained first. FIG. 3 is a diagram
showing an example of the functional structure of the encryp-
tion unit 15 in this embodiment of the present invention. As
shown in the drawing, the encryption unit 15 includes an
encryption key acquiring unit 21, a plaintext acquiring unit
22, an IV generating unit 23, ciphertext generating unit 24, an
embedding rule determining unit 25, an IV embedding unit
26, and an encrypted data outputting unit 27.

The encryption key acquiring unit 21 acquires the encryp-
tion key used in the encryption process from the storage unit
17 (see FIG. 1). In this embodiment, the encryption key
acquiring unit 21 serves as an example of a second acquiring
unit for acquiring the encryption key used in the encryption
process.

The plaintext acquiring unit 22 acquires the plaintext, or
the data to be encrypted which is stored in a table of DB 11
(see FIG. 1), from the DB management unit 12 (see FIG. 1).
In this embodiment, the plaintext serves as an example of first
data, which is the data to be encrypted, and the plaintext
acquiring unit 22 serves as an example of a first acquiring unit
for acquiring first data.

In one embodiment, the IV generating unit 23 generates an
initialization vector (e.g., by generating a pseudo-random
number). In this embodiment, the IV generating unit 23
serves as an example of a first generating unit for generating
an initialization vector.

The ciphertext generating unit 24 generates ciphertext by
encrypting the plaintext acquired by the plaintext acquiring
unit 22 using the encryption key acquired by the encryption
key acquiring unit 21 and the initialization vector generated
by the IV generating unit 23. In this embodiment, the cipher-
text serves as an example of second data, and the ciphertext
generating unit 24 serves as an example of a second generat-
ing unit for generating second data.

The embedding rule determining unit 25 determines the
embedding rule when the initialization vector is to be embed-
ded in the ciphertext, associates key information in the data to
be encrypted with the embedding rule, and stores the asso-
ciation in the storage area for embedding rules in the storage
unit 17 (see FIG. 1). Embedding rules and the method for
determining these rules will be described below. In this
embodiment, the embedding rule determining unit 25 serves
as an example of a determining unit for determining embed-
ding rules, and the storage area for embedding rules in the
storage unit 17 serves as an example of a storage unit for
storing a correspondence relationship between first data and
embedding rules.

US 9,344,274 B2

7

The IV embedding unit 26 generates encrypted data by
embedding the initialization vector generated by the IV gen-
erating unit 23 in the ciphertext generated by the ciphertext
generating unit 24 in accordance with the embedding rule
determined by the embedding rule determining unit 25. In this
embodiment, the IV embedding unit 26 serves as an example
of'an embedding unit for embedding an initialization vector in
second data. Also, the encrypted data serves as an example of
third data, and the IV embedding unit 26 serves as an example
of a third generating unit for generating third data.

The encrypted data output unit 27 outputs the encrypted
data generated by the IV embedding unit 26 to the DB man-
agement unit 12 (see FIG. 1).

FIG. 4 is a flowchart showing an example of operations
performed by the encryption unit 15 in the embodiment of the
present invention. The operations in this flowchart start, for
example, when an encryption function corresponding to a
specific block encryption scheme is called up from the DB
storage unit 12. When the operations have been started, as
shown in FIG. 4, the encryption key acquiring unit 21 in the
encryption unit 15 first acquires an encryption key 102 stored
in the storage unit 17 (Step 201). Also, the plaintext acquiring
unit 22 acquires plaintext 101 from the DB management unit
12 (Step 202). In addition in one embodiment, the IV gener-
ating unit 23 may generate a pseudo-random number to serve
as an initialization vector 103 (Step 203). When the encryp-
tion key, plaintext and initialization vector obtained in Steps
201-203, the ciphertext generating unit 24 generates cipher-
text 104 by encrypting the plaintext with a specific block
encryption scheme using the encryption key and initialization
vector (Step 204). Then, the embedding rule determining unit
25 determines the embedding rule for embedding the initial-
ization vector in the ciphertext (Step 205). Here, the embed-
ding rule determining unit 25 associates key information in
the plaintext with the embedding rule, and stores the associa-
tion in the storage unit 17. The embedding rule and method
for determining these rules will be explained in greater detail
below. Then, the [V embedding unit 26 generates encrypted
data 105 by embedding the initialization vector generated in
Step 203 in the ciphertext generated in Step 204 in accordance
with the embedding rule determined in Step 205. Finally, the
encrypted data output unit 27 outputs the encrypted data 105
generated in Step 206 to the DB management unit 12 (see
FIG. 1) (Step 207). The encrypted data 105 is stored in a
hardware storage device such as storage unit 17.

The following is an explanation of the configuration and
operations of the decrypting unit 16 for decrypting the
encrypted data. FIG. 5is a diagram showing an example of the
functional structure of the decryption unit 16 in the embodi-
ment of the present invention. As shown in the drawing, the
decryption unit 16 includes an encryption key acquiring unit
31, an encrypted data acquiring unit 32, an embedding rule
acquiring unit 33, an IV separating unit 34, a plaintext gen-
erating unit 35, and a plaintext outputting unit 36.

The encryption key acquiring unit 31 acquires the encryp-
tion key used in the decryption process from the storage unit
17 (see FIG. 1). In this embodiment, the encryption key
acquiring unit 31 serves as an example of the second acquir-
ing unit for acquiring the encryption key used in the decryp-
tion process

The encrypted data acquiring unit 32 acquires the
encrypted data, which is data retrieved from a table in the DB
11 (see FIG. 1) from the DB management unit 12 (see FIG. 1).
In this embodiment, the encrypted data acquiring unit 32
serves as a third acquiring unit for acquiring third data, or an
acquiring unit for acquiring third data.

10

15

20

25

30

35

40

45

50

55

60

65

8

The embedding rule acquiring unit 33 acquires from the
storage area, for embedding rules in the storage unit 17 (see
FIG.1), theembedding rule used by the IV embedding unit 26
to embed the initialization vector in the cipher text by retriev-
ing key information passed on by the DB management unit
12.

The IV separating unit 34 separates the encrypted data
acquired by the encrypted data acquiring unit 32 into the
initialization vector and the ciphertext that is the original
encryption result in accordance with the embedding rule
acquired by the embedding rule acquiring unit 33. In this
embodiment, the [V separating unit 34 serves as an example
of a separating unit for separating third data into an initial-
ization vector and second data.

The plaintext generating unit 35 generates plaintext by
decrypting the ciphertext separated and obtained by the IV
separating unit 34 using the encryption key acquired by the
encryption key acquiring unit 31 and the initialization vector
acquired by the IV separating unit 34. In this embodiment, the
plaintext generating unit 35 serves as an example of a restor-
ing unit for restoring first data.

The plaintext outputting unit 36 outputs plaintext gener-
ated by the plaintext generating unit 35 to the DB manage-
ment unit 12 (see FIG. 1).

FIG. 6 is a flowchart showing examples of operations per-
formed by the decryption unit 16 in the embodiment of the
present invention. The operations in this flowchart are started,
for example, when a decryption function corresponding to a
specific block encryption scheme is called up from the DB
management unit 12. When these operations are started, as
shown in the FIG. 6, the encryption key acquiring unit 31 in
the decryption unit 16 acquires the encryption key stored in
the storage unit 17 (Step 301). Also, the encrypted data
acquiring unit 32 acquires encrypted data with an embedded
initialization vector from the DB management unit 12 (Step
302). Then, the embedding rule acquiring unit 33 acquires the
embedding rule stored in the storage unit 17 associated with
key information passed on by the DB management unit 12
serving as the embedding rule used to generate the encrypted
data (Step 303). Then, the separating unit 34 separates the
encrypted data acquired in Step 302 into the ciphertext that is
the original encryption results and the initialization vector in
accordance with the embedding rule acquired in Step 303
(Step 304). With the encryption key, initialization vector and
ciphertext from Steps 301-304, the plaintext generating unit
35 generates plaintext by decrypting the encrypted text with
the decryption scheme corresponding to a specific block
encryption scheme using the encryption key and the initial-
ization vector (Step 305). Finally, the plaintext outputting unit
36 outputs the plaintext generated in Step 305 to the DB
management unit 12 (Step 306).

It has not yet been explained how the embedding rules in
this embodiment are determined in Step 205 of F1G. 4. Here,
for example, the following embedding rules may be consid-
ered. The first embedding rule states that the initialization
vector be simply attached (i.e., concatenated) to the begin-
ning or end of the ciphertext. The embedding second rule
states that the initialization vector be divided by a predeter-
mined (i.e., specified) number of bits to obtain initialization
vector fragments, that the ciphertext be divided by a prede-
termined number of bits to obtain ciphertext fragments, and
that the initialization vector fragments be inserted between
ciphertext fragments in the same order as in the initialization
vector. The third rule states that the \initialization vector is
divided at random positions to obtain initialization vector
fragments of different lengths, that the ciphertext be divided
at random positions to obtain ciphertext fragments of difter-

US 9,344,274 B2

9

ent lengths, and that the initialization vector fragments be
inserted between the ciphertext fragments in an order unre-
lated to their order in the initialization vector.

These rules are for illustrative purposes only. Many other
rules may be considered. For example, a variation of the
second rule and the third rule may be considered which states
that the initialization vector not be divided, that the ciphertext
be divided in two to obtain two ciphertext fragments, and that
the initialization vector be inserted between the two cipher-
text fragments. In other words, the second rule and the third
rule can be generalized to state that the ciphertext be divided
to obtain ciphertext fragments, and that the initialization vec-
tor or fragments of the initialization vector be inserted
between ciphertext fragments. Herein, such insertions
between fragments are referred to as “embedding”.

The following methods may be considered, for example, as
methods for determining the embedding rule. In the first
method, the embedding rule is determined by referencing the
ciphertext generated in Step 204 of FIG. 4. For example, a
rule can be determined so that the initialization vector (e.g.,
pseudo-random number) is not embedded in the first few
bytes of ciphertext, but embedded based on a value in the first
few bytes every time ciphertext is generated. However, the
portion of the ciphertext referenced is not limited to the first
few bytes. More generally, an embedding rule can be deter-
mined for portions of ciphertext other than a specific portion
of ciphertext on the basis of the specific portion of ciphertext.
In the second method, the embedding rule is determined
based on information not obtained from the ciphertext gen-
erated in Step 204 of FIG. 4. The information not obtained
from the ciphertext can be, for example, the date and time of
encryption.

Here, it is important that the decrypting unit 16 be able to
identify the embedding rule used by the encrypting unit 15. In
this embodiment, a single DB device 10 performs both the
encryption and decryption, so the embedding rule can be
shared confidentially by the encryption side and the decryp-
tion side. More specifically, when the encryption unit 15
encrypts data, the embedding rule determining unit 25 deter-
mines the embedding rule, associates key information for the
data with the embedding rule, and stores the association in the
storage area for embedding rules in the storage unit 17. When
the decryption unit 16 decrypts the encrypted data, the
embedding rule acquiring unit 33 acquires the embedding
rule from the storage area in the storage unit 17 based on key
information for the data.

However, when the embedding rule can be identified by
having the decrypting unit 16 reference the encrypted data as
in the first method, the method for determining the embed-
ding rule and not the embedding rule itself is stored in the
storage area for embedding rules in the storage area 17. For
example, in the method for determining the embedding rule,
the first two bits of the ciphertext are referenced. If “00”, the
first embedding rule was used. If “01”, the second embedding
rule was used. If “10”, the third embedding rule was used. If
“11”, the fourth embedding rule was used. In this case, infor-
mation indicating the determination method is associated
withkey information for the data, and the association is stored
in the storage area for embedding rules in the storage unit 17.
Here, the storage area for embedding rules in the storage unit
17 serves as an example of a storage unit for storing a corre-
spondence relationship between first data and either an
embedding rule or a determination method for the embedding
rule.

20

40

45

10

In the embodiment, as described above, storage of the
initialization vector in a portion of the encrypted data is
premised on the generation of an initialization vector each
time encryption is performed. In this way, different encrypted
results can be obtained even when the same plaintext and
same encryption key are used, and a special management
means is not required to manage initialization vector s. Also,
the initialization vector embedding rule cannot be determined
in the encryption results. Because the initialization vector
cannot be extracted, the initialization vector can be con-
cealed.

Finally, the hardware configuration of a computer able to
implement this embodiment will be explained. FIG. 7 is a
diagram showing an example of the hardware configuration
of a computer or computer system able to implement the
embodiment of the present invention. As shown in the draw-
ing, the computer includes a central processing unit (CPU)
90a serving as a computing means, a main memory 90c
connected to the CPU 90a via a motherboard (M/B) chip set
904, and a display means 904 connected to the CPU 90qa via
the same M/B chip set 906. A network interface 907, magnetic
disk device (HDD) 90g, audio mechanism 90/, keyboard/
mouse 907, and floppy disk drive 90; are also connected to the
M/B chip set 905 via a bridge circuit 90e.

In FIG. 7, the various configurational elements are con-
nected via a bus. For example, the CPU 904 and the M/B chip
set 905, and the M/B chip set 905 and the main memory 90¢
are connected via a CPU bus. Also, the M/B chip set 905 and
the display mechanism 904 may be connected via an accel-
erated graphics port (AGP). However, when the display
mechanism 904 includes a PCI express-compatible video
card, the M/B chip set 905 and the video card are connected
via a PCI express (PCle) bus. Also, PCI Express can be used
as the network interface 90fif, for example, it is connected to
the bridge circuit 90e. Examples of magnetic disk drives 90g
include a serial AT attachment (ATA), a parallel-transmission
ATA, and peripheral components interconnect (PCI). The
keyboard/mouse 90i and the floppy disk drive 90/ can use a
universal serial bus (USB).

Here, the present invention can be realized using all hard-
ware or all software. It can also be realized using a combina-
tion of both hardware and software. The present invention can
also be realized as a computer, data processing system/com-
puter system, or computer program. The computer program
can be stored and distributed on a computer-readable
medium. Here, the medium can be electronic, magnetic, opti-
cal, mechanical, infrared, or a semiconductor system (device
or equipment). Examples of computer-readable media
include semiconductors, solid-state storage devices, mag-
netic tape, removable computer diskettes, random-access
memory (RAM), read-only memory (ROM), rigid magnetic
disks, and optical disks. Examples of optical disks at the
present time include compact disk read-only memory (CD-
ROM) disks, compact disk read/write (CD-R/W) disk, and
DVDs.

When a computer program of the present invention is pro-
vided on a computer-readable medium, a computer program
for executing the process in FIG. 4 and the computer program
for executing the process in FIG. 6 can be stored in the same
medium or in different media.

The present invention was explained above using an
embodiment, but the technical scope of the present invention
is not limited in any way by this embodiment. It should be
clear to a person of skill in the art that various modifications
and substitutions can be made without departing from the
spirit and scope of the present invention.

US 9,344,274 B2

11

What is claimed is:

1. A method for encrypting data, said method comprising:

generating, by a processor of a computer system, cipher-

text from plaintext by applying an initialization vector
and an encryption key to the plaintext; and

said processor combining the initialization vector with the

ciphertext to generate encrypted data, by using an
embedding rule to perform said combining,

wherein said generating ciphertext comprises:

dividing the plaintext into N plaintext blocks denoted as
B,, ..., B,, wherein Nis an integer of at least 2;

encrypting block B, using the encryption key and the
initialization vector to generate cypher block C, ;

encrypting block B, , using the encryption key and block
B,,_; to generate cypher block C,, (n=2, . .., N); and

combining cypher blocks C,, . . ., C,, to generate the
ciphertext.

2. The method of claim 1, wherein the initialization vector
is a pseudo-random number.

3. The method of claim 1, wherein said using the embed-
ding rule comprises generating the encrypted data by attach-
ing the initialization vector to the beginning or end of the
ciphertext.

4. The method of claim 1, wherein said using the embed-
ding rule comprises generating the encrypted data by:

dividing the initialization vector into a specified number of

bits to obtain an ordered sequence of initialization vector
fragments;

dividing the ciphertext into a specified number of bits to

obtain ciphertext fragments; and

distributing the initialization vector fragments between the

ciphertext fragments according to the order of the ini-
tialization vector fragments in the sequence.

5. The method of claim 1, wherein said using the embed-
ding rule comprises generating the encrypted data by:

dividing the initialization vector at random positions into

initialization vector fragments of different lengths;
dividing the ciphertext at random positions into ciphertext
fragments of different lengths; and

distributing the initialization vector fragments between the

ciphertext fragments according to an order that is unre-
lated to the order of the initialization vector fragments in
the sequence.

6. The method of claim 1, said method further comprising:

said processor retrieving, from a storage unit, a process for

determining the embedding rule; and

said processor performing the process to determine the

embedding rule.

7. The method of claim 6, wherein said performing the
process comprises using the first two bits of the ciphertext to
determine the embedding rule.

8. A computer program product, comprising a computer
readable storage device having computer readable program
code stored therein, said program code containing instruc-
tions which, upon being executed by a processor of a com-
puter system, implement a method for encrypting data, said
method comprising:

said processor generating ciphertext from plaintext by

applying an initialization vector and an encryption key
to the plaintext; and

said processor combining the initialization vector with the

ciphertext to generate encrypted data, by using an
embedding rule to perform said combining,

wherein said generating ciphertext comprises:

dividing the plaintext into N plaintext blocks denoted as
B,, ..., By, wherein Nis an integer of at least 2;

25

30

35

40

45

50

55

o

5

12

encrypting block B, using the encryption key and the
initialization vector to generate cypher block C; ;

encrypting block B,, using the encryption key and block
B,,_; to generate cypher block C,, (n=2, ..., N); and

combining cypher blocks C,, . . ., C, to generate the
ciphertext.

9. The computer program product of claim 8, wherein the
initialization vector is a pseudo-random number.

10. The computer program product of claim 8, wherein said
using the embedding rule comprises generating the encrypted
data by attaching the initialization vector to the beginning or
end of the ciphertext.

11. The computer program product of claim 8, wherein said
using the embedding rule comprises generating the encrypted
data by:

dividing the initialization vector into a specified number of

bits to obtain an ordered sequence of initialization vector
fragments;

dividing the ciphertext into a specified number of bits to

obtain ciphertext fragments; and

distributing the initialization vector fragments between the

ciphertext fragments according to the order of the ini-
tialization vector fragments in the sequence.

12. The computer program product of claim 8, wherein said
using the embedding rule comprises generating the encrypted
data by:

dividing the initialization vector at random positions into

initialization vector fragments of different lengths;
dividing the ciphertext at random positions into ciphertext
fragments of different lengths; and

distributing the initialization vector fragments between the

ciphertext fragments according to an order that is unre-
lated to the order of the initialization vector fragments in
the sequence.

13. A computer system comprising a processor, a memory
coupled to the processor, and a computer readable storage
device coupled to the processor, said storage device contain-
ing program code which, upon being executed by the proces-
sor via the memory, implements a method for encrypting data,
said method comprising:

said processor generating ciphertext from plaintext by

applying an initialization vector and an encryption key
to the plaintext; and

said processor combining the initialization vector with the

ciphertext to generate encrypted data, by using an
embedding rule to perform said combining,

wherein said generating ciphertext comprises:

dividing the plaintext into N plaintext blocks denoted as
B,, ..., By, wherein Nis an integer of at least 2;

encrypting block B, using the encryption key and the
initialization vector to generate cypher block C, ;

encrypting block B,, using the encryption key and block
B,,_; to generate cypher block C,, (n=2, ..., N); and

combining cypher blocks C,, . . ., C,, to generate the
ciphertext.

14. The computer system of claim 13, wherein the initial-
ization vector is a pseudo-random number.

15. The computer system of claim 13, wherein said using
the embedding rule comprises generating the encrypted data
by attaching the initialization vector to the beginning or end
of the ciphertext.

16. The computer system of claim 13, wherein said using
the embedding rule comprises generating the encrypted data
by:

dividing the initialization vector into a specified number of

bits to obtain an ordered sequence of initialization vector
fragments;

US 9,344,274 B2
13

dividing the ciphertext into a specified number of bits to
obtain ciphertext fragments; and
distributing the initialization vector fragments between the
ciphertext fragments according to the order of the ini-
tialization vector fragments in the sequence. 5
17. The computer system of claim 13, wherein said using
the embedding rule comprises generating the encrypted data
by:
dividing the initialization vector at random positions into
initialization vector fragments of different lengths; 10
dividing the ciphertext at random positions into ciphertext
fragments of different lengths; and
distributing the initialization vector fragments between the
ciphertext fragments according to an order that is unre-
lated to the order of the initialization vector fragments in 15
the sequence.

